
Bash Datalog: Answering Datalog Queries
with Unix Shell Commands

Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

Telecom ParisTech, Paris, France

Abstract. Dealing with large tabular datasets often requires extensive
preprocessing. This preprocessing happens only once, so that loading and
indexing the data in a database or triple store may be an overkill. In this
paper, we present an approach that allows preprocessing large tabular
data in Datalog – without indexing the data. The Datalog query is trans-
lated to Unix Bash and can be executed in a shell. Our experiments show
that, for the use case of data preprocessing, our approach is competitive
with state-of-the-art systems in terms of scalability and speed, while at
the same time requiring only a Bash shell on a Unix system.

1 Introduction

Motivation. Many data analytics tasks work on tabular data. Such data can
take the form of relational tables or TAB-separated files. Even RDF knowledge
bases can be seen abstractly as tabular data of a subject, a predicate, an object,
and an optional graph id. Quite often, such data has to be preprocessed before
the analysis can be made. We focus here on preprocessing in the form of select-
project-join-union operations with recursion – removing superfluous columns,
selecting rows of interest, recursively finding all instances of a class, etc. The
defining characteristic of such a preprocessing step is that it is executed only
once on the data in order to constitute the dataset of interest for the later
analysis. This one-time preprocessing is the task that we are concerned with.

Databases or triple stores can obviously help. However, loading large amounts
of data into these systems may take hours or even days (Wikidata [33], e.g., con-
tains 267GB of data). Another possibility is to use systems such as DLV [18],
Souffle [26], or RDFox [22], which work directly on the data. However, these sys-
tems load the data into memory. While this works well for small datasets, it does
not work for larger ones (as we show in our experiments) Large-scale data pro-
cessing systems such as BigDataLog [28], Flink [5], Dryad [15], or NoDB [3] can
help. However, these require the installation of particular software, the knowl-
edge of particular programming languages, or even a particular distributed in-
frastructure. Installing and getting to run such systems can take several hours.
The user may not have the necessary knowledge and infrastructure to do this
(think of a researcher in the Digital Humanities who wants to preprocess a file of
census data; or of an engineer in a start-up who has to quickly join log files on a
common column; or of a student who wants to extract a subgraph of Wikidata).

2 Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

Our Proposal. In this paper, we propose a method to preprocess tabular data
files without installing any particular software. We propose to express the prepro-
cessing steps in Datalog [1]. For example, assume that there is a file facts.tsv

that contains RDF facts in the form of TAB-separated subject-predicate-object
triples. Assume that we want to recursively extract all places located in the
United States. The Datalog program in our dialect would be:

fact(X, R, Y) :∼ cat facts.tsv

locatedIn(X, Y) :- fact(X, "locatedIn", Y) .

locatedIn(X, Y) :- locatedIn(X, Z), fact(Z, "locatedIn", Y) .

main(X) :- locatedIn(X, "USA") .

This program prints the file facts.tsv into a predicate fact. The following two
lines are the recursive definition of the locatedIn predicate. The main predi-
cate is a predefined predicate that acts as the query. Our rationale for choosing
Datalog is that it is a particularly simple language, which has just a single syn-
tactic construction, and no reserved keywords. Yet, Datalog is expressive enough
to deal with joins, unions, projections, selections, negation, and recursivity. In
particular, it can deal with n-ary tables (n > 3). If the user deals primarily with
RDF data, our approach can also be used with N-Triples files as the A-Box, a
subset of OWL 2 RL [21] as the T-Box, and SPARQL [14] for the query.

To execute the Datalog program, we propose to compile it automatically to
Unix Bash Shell commands. We offer a Web page to this end: https://www.
thomasrebele.org/projects/bashlog. The user can just enter the Datalog
program, and click a button to obtain the following Bash code (simplified):

awk ’$2 == "locatedIn" {print $1 "\t" $3}’ facts.tsv > li.tmp

awk ’$2 == "USA" {print $0}’ li.tmp | tee full.tmp > delta.tmp

while

join li.tmp delta.tmp | comm -23 - full.tmp > new.tmp

mv new.tmp delta.tmp

sort -m -o full.tmp full.tmp delta.tmp

[-s delta.tmp];

do continue; done

cat full.tmp

The Bash code can be copy-pasted into a Unix Shell and run. Such a solution
has several advantages. First, it does not require any software installation. It
just requires a visit to a Web site. The resulting Bash code runs on any Unix-
compatible system out of the box. Second, the Bash shell has been around for
several decades, and the commands are not just tried and tested, but actually
continuously developed. Modern implementations of the sort command, e.g.,
can split the input into several portions that fit into memory, and sort them
individually. Finally, the Bash shell allows executing several processes in parallel,
and their communication is managed by the operating system.
Contribution. We prose to compile a Datalog program automatically into Bash
commands. Our method optimizes the Datalog program with relational algebra

https://www.thomasrebele.org/projects/bashlog
https://www.thomasrebele.org/projects/bashlog

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 3

optimization techniques, re-uses previously computed intermediate results, and
produces a highly parallelized Shell script. For this purpose, our method employs
pipes and process substitution. Our experiments on a variety of datasets and
preprocessing tasks show that this method is competitive in terms of runtime
with state-of-the-art database systems, Datalog engines, and triple stores.

We start with a discussion of related work in Section 2. Section 3 introduces
preliminaries. Section 4 presents our approach, and Section 5 evaluates it.

2 Related Work

Data Processing Systems. Relational Databases such as Oracle, IBM DB2,
Postgres, MySQL, MonetDB [4] and NoDB [3] can handle tabular data of ar-
bitrary form, while the triple stores such as OpenLink Virtuoso [8], Stardog,
and Jena [6] target RDF data. HDT [11] is a binary format for RDF, which
can be used with Jena. RDFSlice [20] can preprocess RDF datasets. Reasoners
such as Pellet [23], HermiT [27], RACER [13], Fact++ [30] and Jena [6] can
perform OWL reasoning on RDF data. Datalog systems such as DLV [18], Souf-
fle [26], BigDatalog [28], RDFox [22] and others [16,34,35] can efficiently evalu-
ate Datalog queries on large data. Distributed Data Processing systems such as
Dryad [15], Apache Tez [25], SCOPE [37], Impala [9], Apache Spark [36], and
Apache Flink [5] provide advanced features such as support for SQL or streams.

All of these systems can be used for preprocessing data. However, the vast
majority of these systems require the installation of software. The parallelized
systems also require a distributed infrastructure. Our approach, in contrast,
requires none of these. It just requires a visit to a Web page. The Bash script that
we produce runs in a common shell console without any further prerequisites.
Interestingly, our approach still delivers comparable performance to the state of
the art, as we shall see in the experiments.

Only very few systems do not require a software installation beyond down-
loading a file (e.g., RDFSlice [20], Stardog, and DLV [18]). Yet, as we shall see
in the experiments, these systems do not scale well to large datasets.
Other Work. Linked Data Fragments [32] aim to strike a balance between
downloading an RDF data dump and querying it on a server. The method thus
addresses a slightly different problem from ours. AI planning with softbots [10]
aims to answer queries on an incomplete and evolving database. In our problem
setting, however, we have access to all the information. NoSQL Databases such
as Cassandra, HBase, and Google’s BigTable [7] target non-tabular data. Our
method, in contrast, aims at tabular data.

3 Preliminaries

Datalog. A Datalog rule with negation [1] takes the form

H :—B1, . . . , Bn,¬N1, . . . ,¬Nm.

4 Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

Here, H is the head atom, B1, ..., Bn are the positive body atoms, and N1, ..., Nm

are the negated body atoms. Each atom is of the form r(x1, ..., xk), where r is
a relation name and x1, ..., xk ∈ V ∪ C, where V is a set of variables and C is
a set of constants. Intuitively, such a rule says that H holds if B1, ..., Bn and
none of the N1, ..., Nm holds. We consider only safe rules, i.e., each variable in
the head or in a negated atom must also appear in a positive body atom. A
Datalog program is a set of Datalog rules. A set M of atoms is a model of a
program P , if the following holds: M contains an atom a iff P contains a rule
H :—B1, ..., Bn,¬N1, . . . ,¬Nm, such that there exists a substitution σ : V → C
with σ(Bi) ∈M for i ∈ {1, ..., n} and σ(Ni) 6∈M for i ∈ {1, ...,m} and a = σ(H).
We consider only stratified Datalog programs [1], which entails that there exists
a unique minimal model.

OWL RL [21] is a subset of the OWL ontology language. Since every OWL
RL ontology can be translated to Datalog [22], we deal with Datalog as the more
general case in all of the following.
Relational Algebra. Relational algebra [1] provides the semantics of relational
database operations on tables. For our purposes, we use the unnamed relational
algebra with the operators select σ, project π, join on, anti-join ., and union ∪
(see [24] for their definitions). We also use the least fixed point (LFP) operator
µ [2]. For a function f from a table to a table, µx(f(x)) is the least fix point
of f for the ⊆ relation. With this, our algebra has the same expressivity as safe
stratified Datalog programs, i.e., the translation of safe Datalog with stratified
negations to relational algebra is sound and complete [1].

Example 2 (Relational Algebra): The following expression computes the
transitive closure of a two-column table subclass:

µx(subclass ∪ π1,4(x on2=1 x))

µ computes the least fix point of a function. Here, the function is given by
the argument of the µ-operator. To compute the least fix point, we execute
the function first with the empty table, x = ∅. Then the function returns
the subclass table. Then we execute the function again on this result. This
time, the function will join subclass with itself, project the resulting table
on the first and last column, and add in the original subclass table. We
repeat this process until no more changes occur.

Unix. Unix is a family of multitasking computer operating systems, which are
widely used on servers, smartphones, and desktop computers. One of the char-
acteristics of Unix is that “Everything is a file”, which means that files, pipes,
the standard output, the standard input, and other resources can all be seen as
streams of bytes. Here, we are interested only in TAB-separated byte streams,
i.e., streams that consist of several rows (sequences of bytes separated by a new-
line character), which each consist of the same number of columns (sequences of
bytes separated by a tabulator character).

The Bourne-again shell (Bash) is a command-line interface for Unix-like op-
erating systems. A Bash command is either a built-in keyword, or a small pro-

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 5

gram. We will only use commands of the POSIX standard. One of them is the
awk command, which we use as follows:

awk -F$'\t' 'p' b

This command executes the program p on the byte stream b, using the TAB as
a separator for b. We will discuss different programs p later in this paper.
Pipes. When a command is executed, it becomes a process. Two processes can
communicate through a pipe, i.e., a byte stream that is filled by one process,
and read by the other one. If the producing process is faster than the receiving
one, the pipe buffers the stream, or blocks the producing process if necessary.
In Bash, a pipe between process p1 and process p2 pipes can be constructed by
stating p1 | p2. A pipe can also be constructed “on the fly” by a so-called
process substitution, as follows: p1 <(p2). This construction pipes the output
of p2 into the first argument of p1.

4 Approach

4.1 Our Datalog Dialect

In our Datalog dialect, predicates are alphanumerical strings that start with
a lowercase character. Variables start with an uppercase letter. Constants are
strings enclosed by double quotes. Constants may not contain quotation marks,
TAB characters, or newline characters. For our purposes, the Datalog program
has to refer to files or byte streams of data. For this reason, we introduce an
additional type of rules, which we call command rules. A command rule takes
the following form:

p(x1, ..., xn) :∼ c

Here, p is a predicate, x1, ..., xn are variables, and c is a Bash command. Semanti-
cally, this rule means that executing c produces a TAB-separated byte stream of
n columns, which will be referred to by the predicate p in the Datalog program.
In the simplest case, the command c just prints a file, as in cat facts.tsv.
However, the command can also be any other Bash command, such as ls -1.

Our goal is to compute a certain output with the Datalog program. This
output is designated by the distinguished head predicate main. An answer of
the program is a grounded variant of the head atom of this rule that appears
in the minimal model of the program. See again Figure 1 for an example of
a Datalog program in our dialect. Our dialect is a generalization of standard
Datalog, so that a normal Datalog program can be run directly in our system.

Our approach can also work in “RDF mode”. In that mode, the input consists
of an OWL 2 RL [21] ontology, a SPARQL [14] query, and an N-Triples file F . We
build a main predicate for the SPARQL query, and we use a small AWK program
that converts F into a TAB-separated byte stream (see our technical report [24]
for details). Much like in RDFox [22], we convert the OWL ontology into Datalog
rules (see again [24]). For now, we support only a subset of OWL 2 RL: Like
RDFox [22], we assume that all classes and properties axioms are provided by

6 Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

the ontology and will not be queried by the SPARQL query. We also do not yet
support OWL axioms related to literals. Our SPARQL implementation supports
basics graph patterns, property paths without negations, OPTIONAL, UNION
and MINUS.

4.2 Loading Datalog

Next, we build a relational algebra expression for the main predicate of the Dat-
alog program. Our algorithm is similar to existing approaches [31]. Algorithm 1
takes as input a predicate p, a cache, and a Datalog program P . The algorithm
is initially called with p=main, cache=∅, and the Datalog program that we want
to translate. The cache stores already computed relational algebra plans. This
allows us to re-use the same sub-plan multiple times in the final plan, thus the
algorithm builds a directed acyclic graph (DAG) instead of a tree.

Our algorithm first checks whether p appears in the cache. In that case, p
is currently being computed in a previous recursive call of the method, and the
algorithm returns a variable x indexed by p. This is the variable for which we
compute the least fix point.

Then, the algorithm traverses all rules with p in the head. For every rule,
the algorithm recursively retrieves the plan for the body atoms. The algorithm
(anti-)joins the sub-plans, adding selections σj=k if necessary. Finally, it puts
the resulting formula into a project-node that extracts the relevant columns.

Algorithm 1: Translation from Datalog to relational algebra

1 fn mapPred (p, cache, P) is
2 if p ∈ cache then return xp ;
3 plan← ∅; newCache← cache ∪ {p}
4 foreach p(H1, ..., Hnh) :– r1(X1

1 , ..., X
1
n1

), ...,¬q1(Y 1
1 , ..., Y

1
m1

), ... in P do
5 bodyPlan← {()}
6 foreach ri(X

i
1, . . . , X

i
ni

) do
7 atomPlan← mapPred(ri, newCache, P)

8 foreach (Xi
j , X

i
k) | Xi

j = Xi
k, j 6= k do

9 atomPlan← σXi
j=Xi

k
(atomPlan)

10 bodyPlan← bodyPlan on atomPlan

11 foreach ¬qi(Y i
1 , . . . , Y

i
mi

) do
12 atomPlan← mapPred(qi, ∅, P)

13 foreach (Y i
j , Y

i
k) | Y i

j = Y i
k , j 6= k do

14 atomPlan← σY i
j =Y i

k
(atomPlan)

15 bodyPlan← bodyPlan . atomPlan

16 plan← plan ∪ πH1,...,Hnh
(bodyPlan)

17 foreach rule p(H1, . . . , Hnh) :∼ c in P do plan← plan ∪ πH1,...,Hnh
(c) ;

18 return µxp(plan)

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 7

Example 3 (Datalog Translation): Assume that there is a two-column TAB-
separated file subclass.tsv, which contains each class with its subclasses.
Consider the following Datalog program P :

(1) directSubclass(x,y) :∼ cat subclass.tsv

(2) main(x,y) :- directSubclass(x,y).

(3) main(x,z) :- directSubclass(x,y), main(y,z).

Our algorithm will go through all rules with the head predicate main. These
are Rule 2 and Rule 3. For Rule 2, the algorithm will recursively call itself
and return µxdirectSubclass

(∅ ∪ [cat subclass.tsv]). Since the argument of
µ does not contain the variable xdirectSubclass, this is equivalent to [cat

subclass.tsv]. For the first body atom in Rule 3, the algorithm returns
[cat subclass.tsv] just like before. For the second body atom, the al-
gorithm returns xmain, because main is in the cache. Thus, Rule 3 yields
π1,4([cat subclass.tsv] on2=1 xmain)). Finally, the algorithm constructs

µxmain
([cat subclass.tsv] ∪ π1,4([cat subclass.tsv] on2=1 xmain))

4.3 Producing Bash Commands

The previous step has translated the input Datalog program to a relational
algebra expression. Now, we translate this expression to a Bash command by
the function b, which is defined as follows:

b([c]) = c
An expression of the form [c] is already a Bash command, and hence we can
return directly c.

b(e1 ∪ ... ∪ en)
We translate a union into a sort command that removes duplicates:

sort -u <(b(e1)) ... <(b(en))

b(e1 onx=y e2)
A join of two expressions e1 and e2 on a single variable at position x and y,
respectively, gives rise to the command

join -t$'\t' -1x -2y
<(sort -t$'\t' -kx <(b(e1)))
<(sort -t$'\t' -ky <(b(e2)))

This command sorts the byte streams of b(e1) and b(e2), and then joins them
on the common column.

b(e1 onx=y,... e2)
The Bash join command can perform the join on only one column. If we
want to join on several columns, we have to add a new column to each of the
byte streams. This new column concatenates the join columns into a single
column. This can be achieved with the following AWK program, which we
run on both b(e1) and b(e2):

{ print $0 FS $j1 s $j2 s ... s $jn }

8 Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

Here, the indices j1, ..., jn are the positions of the join columns in the input
byte stream, FS is the field separator, and s is a special separation character
(we use ASCII character 2, but any other one can be used as well). Once we
have done this with both byte streams, we can join them on this new column
as described above. This join will also remove the additional column.

b(e1 .x e2)
Just as a regular join, an anti-join becomes a join command. We use the
parameter -v1, so that the command outputs only those tuples emerging
from e1 than cannot be joined with those from e2. We deal with anti-joins
on multiple columns in the same way as with multi-column joins.

b(πi1,...in(e))
A projection becomes the following AWK program, which extracts the given
columns from the input byte stream b(e):

{ print $i1 FS ... FS $in }
b(πi:a(e))

A constant introduction becomes the following AWK program, which pro-
duces a TAB-separated byte stream that inserts the constant in column i of
the input byte stream b(e):

{ print $1 FS ... $(i-1) FS a FS $i FS ... $n}
b(σi=v(e))

A selection node gives rise to the following AWK program, which selects the
corresponding rows from the input byte stream b(e):

$i=="v" { print $0 }
This command can be generalized easily to a selection on several columns.

Several of these translations produce process substitutions. In such cases, Bash
starts the parent process and the inner process in parallel. The parent process
will block while it cannot read from the inner processes. Thus, only the innermost
processes run in the beginning. Every process is run asynchronously as soon as
input and CPU capacity is available. Thus, our Bash program is not subject to
the forced synchronization that appears in Map-Reduce systems.

4.4 Recursion

We have just defined the function b that translates a relational algebra expression
to a Bash command. We will now see how to define b for the case of recursion.
A node µx(f(x)) becomes

echo -n > delta.tmp; echo -n > full.tmp

while

sort b(f(delta.tmp)) | comm -23 - full.tmp > new.tmp;

mv new.tmp delta.tmp;

sort -u -m -o full.tmp full.tmp <(sort delta.tmp);

[-s delta.tmp];

do continue; done

cat full.tmp

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 9

This code uses 3 temporary files to compute the least fix point of f : full.tmp
contains all facts inferred until the current iteration. delta.tmp contains newly
added facts of an iteration. new.tmp is used as swap file. The code first creates
delta.tmp and full.tmp as empty files. It then runs f on the delta file. The
comm command compares the sorted outcome of f to the (initially empty) file
full.tmp, and writes the new lines to the file new.tmp. This file is then renamed
to delta.tmp. This procedure updates the file delta.tmp to contain the newly
added facts. The comm command cannot write directly to delta.tmp, because
this file also serves as input to the command produced by b(f(delta.tmp)).

The following sort command merges the new lines into full.tmp, and writes
the output to full.tmp (unlike the comm command, the sort command can write
to a file that also serves as input). Now, all facts generated in this iteration have
been added to full.tmp. The [...] part of the code lets the loop run while the
file delta.tmp is not empty, i.e., while new lines are still being added. If no new
lines were added, the code quits the loop, and prints all facts. Note that, due to
the monotonicity of our relational algebra operators, and due to the stratification
of our programs, we can afford to run f only on the newly added lines.

4.5 Materialization

Materialization nodes. To avoid re-computing an algebra expression that has
already been computed, we introduce a new type of operator to the algebra,
the materialization node. A materialization node £(m,(λy : p)) has two sub-
plans: m is the plan that is used multiple times, and that we will materialize.
The lambda function (λy : p) is the main plan, and takes the materialized plan
as parameter. The variable y replaces all occurrences of m in the original plan
(see [24] for details).

mkfifo lock_t
(b(m) > t

mv lock_t done_t
cat done_t &

exec 3> done_t
exec 3>&-

) &

by→t(p)
rm t

Bash translation. The translation to Bash is
shown on the right. b is the Bash translation func-
tion defined in Section 4.3. t is a temporary file
name. The code first creates a named pipe called
lock t. Commands that use t have to wait un-
til b(m) finishes. We ensure this by making these
commands read from lock t. Since this pipe con-
tains no data, the commands block. When b(m)
finishes, the two exec commands close the named
pipe, thus unblocking the commands that need t.
There can be a rare race condition: b(m) may fin-
ish before any process that listens on the pipe was started. In that case, the two
exec commands will try to close a pipe that has no listeners. In such cases, the
exec command will block. We solve this problem by reading from the pipe with
a cat command that runs in the background. This way, the pipe has at least
one listener, and the exec commands will close the pipe. This, however, brings
a second problem: If the processes that listen on the pipe were still not started,
they will try to listen to a closed pipe. To avoid this problem, we rename the
pipe from lock t to done t. Such a renaming does not affect any processes that

10 Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

already listen on the pipe, but it will prevent any new processes from listening
on the pipe under the old name.

by→t extends b as follows: by→t(y) generates the bash code cat t, and all
plan nodes pi that have a child y generate the bash code

cat lock t 2> /dev/null ; b(pi)

As explained above, the cat command blocks the execution until t is mate-
rialized. The part “2> /dev/null” removes the error message in case cat is
executed when the pipe was already renamed.

4.6 Optimization

Query Optimizations. We apply the usual optimizations on our relational
algebra expressions: we push selection nodes as close to the source as possible;
we merge unions; we merge projects; we apply a simple join re-ordering. Ad-
ditionally, we remove an occurrence of a LFP variable, if it cannot contribute
new facts; we remove the LFP when there is no recursion; and we extract from
a LFP node the non-recursive part of the inner plan (so that it is computed
only once at the beginning of the fixed point computation). We also optimize fix
point computations in the same way as in the semi-naive Datalog evaluation [1]
(see again [24] for details).
Bash Optimizations. We collect different AWK commands that select or
project on the same file into a single AWK command. This command runs only
once through the file, and writes out all selections and projections into several
files, one for each original AWK command. We replace multiple comparisons with
constants on the same columns by a hash table lookup. We detect nested sort

commands, and remove redundant ones. We run sort -u on the final output to
make all results unique. We estimate the number of concurrently running sort
commands, and assign each of them an equal amount of memory, if the buffer size
parameter is available. Finally, we force all commands to use the same character
set and sort order by adding the command export LC ALL=C to our program.

5 Experiments

We ran our method on several datasets, and compared it to several competitors.
All our experiments were run on a laptop with Ubuntu 16.04, an Intel Core
i7-4610M 3.00 GHz CPU, 16 GB of RAM, 16 GB of swap space, and 3.8 TB of
hard disk space. We used GNU Bash 4.3.48, mawk 1.3.3 for AWK, and GNU
coreutils 8.25 for the other POSIX commands.

We emphasize that our goal is not to be faster than each and every system
that currently exists. For this, the corpus of related work is simply too large
(see Section 2). This is also not the purpose of Bash Datalog. The purpose of
Bash Datalog is to provide a preprocessing tool that runs without installing any
additional software besides a Bash shell. This is an advantage that no competing
approach offers. Our experiments then serve mainly to show that our approach
is generally comparable in terms of scalability with the state of the art.

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 11

Bash DLV Souffle RDFox Jena Jena Stardog Virtuoso Postgres∗ NoDB∗ MonetDB∗ RDF-
TDB HDT -I +I -I +I Slice∗

0.7 9.6 7.8 2.2 25.7 26.4 12.8 11.7 4.8 27.5 >600 1.8 2.6 12.6
1.3 9.3 119.4 2.2 281.3 >600 13.6 11.8 – – – – – –
0.9 9.2 8.8 2.2 26.7 27.0 12.7 11.5 7.8 30.5 292.9 1.9 2.7 –
1.9 9.3 11.9 2.2 >600 >600 13.2 12.2 14.7 37.4 >600 2.3 3.1 –
1.4 9.3 10.3 2.2 >600 >600 12.9 – 28.9 51.6 – 2.2 3.0 –
1.9 9.4 11.1 2.4 >600 >600 17.6 – 21.2 43.9 – 3.9 4.7 –
2.4 9.5 56.3 2.2 >600 >600 13.4 – 21.6 44.3 >600 3.0 3.9 –
2.5 9.3 12.9 2.3 >600 >600 15.3 – – – – – – –
3.1 9.4 >600 2.3 >600 >600 13.4 – 71.1 93.8 >600 25.5 26.8 –
2.0 9.3 11.6 2.2 >600 >600 13.5 – 23.0 45.7 >600 5.8 7.1 –
0.9 9.3 7.8 2.2 25.3 35.7 13.0 11.8 – – – – – –
1.4 9.2 10.9 2.2 >600 >600 13.1 – – – – – – –
1.4 9.2 10.1 2.2 >600 >600 12.9 – 8.4 31.1 >600 4.3 5.4 –
0.8 9.5 6.7 2.3 34.5 24.8 13.5 12.0 4.8 27.5 19.1 1.9 2.7 3.7

of which loading: 16.8 7.4 11.0 5.9 4.4 24.3 1.7 2.5

Table 1. Runtime for the 14 LUBM queries with 10 universities (155 MB), in seconds.
∗ = no support for querying with a T-Box. We folded the T-Box into the query.
+/-I = with/without indexes. A dash means that the query is not supported.

5.1 Lehigh University Benchmark

Setting. The Lehigh University Benchmark (LUBM) [12] is a standard dataset
for Semantic Web repositories, which models universities. It is parameterized
by the number of universities, and hence its size can be varied. LUBM comes
with 14 queries, which are expressed in SPARQL. We compare our approach
to Stardog1, Virtuoso [8], RDFSlice [20], Jena [6], and Jena with the binary
triple format HDT [11]. For RDFox [22], Souffle [26], DLV [18], we translated
the queries to Datalog in the same way that we translate the queries to Datalog
for our own system (Section 4.2). For NoDB [3], Postgres2, and MonetDB [4], we
translated the Datalog queries first to an algebra expression, and then to SQL.
In this process, we applied the relational algebra optimizations of Section 4.6. In
this way, the T-Box of the LUBM queries is folded into the SQL query. Not all
systems support all types of queries. MonetDB does not support recursive SQL
queries. Postgres supports only certain types of recursive queries [24]. The same
applies to NoDB. Virtuoso currently does not support intersections. RDFSlice
aims at the slightly different problem of RDF-Slicing. It supports only a specific
type of join. Also, it does not support recursion.

We ran every competitor on all queries that it supports, and averaged the
runtime over 3 runs. We checked whether the query results were correct.

LUBM10. Table 1 shows the runtimes of all queries on LUBM with 10 univer-
sities. The runtimes include the loading and indexing times. For systems where

1 https://www.stardog.com/, v. 5.2.0
2 https://www.postgresql.org/, v. 10.1

https://www.stardog.com/
https://www.postgresql.org/

12 Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

we could determine these times explicitly, we noted them in the last row of
the table. Since most systems finished in a matter of seconds, we aborted sys-
tems that took longer than 10 minutes. Among the 4 triple stores (Jena+TDB,
Jena+HDT, Stardog, and Virtuoso), only Stardog can finish on all queries in
less than 10 minutes. RDFSlice can answer only 2 queries, and runs a bit faster
than Stardog. The 5 database competitors (Postgres, NoDB, and MonetDB –
with and without indexes) are generally faster. Among these, MonetDB is much
faster than Postgres and NoDB. Postgres and MonetDB are fastest without in-
dexes, which is to be expected when running the query only once. Among the
best performing systems are two Datalog systems (Bash Datalog, and RDFox).
RDFox shines with a very short and nearly constant time for all queries. We
suspect that this time is given by the loading time of the data, and that it dom-
inates the answer computation time. Nevertheless, Bash Datalog is faster than
RDFox on nearly all queries on LUBM 10.

LUBM 500 (7.8 GB) LUBM 1000 (16 GB)

Q
u
er

y

B
a
sh

R
D

F
ox

S
ta

rd
o
g

V
ir

tu
o
so

M
o
n
et

D
B

(n
o

in
d
ic

es
)

M
o
n
et

D
B

(i
n
d
ic

es
)

R
D

F
S
li
ce

B
a
sh

R
D

F
ox

S
ta

rd
o
g

M
o
n
et

D
B

(n
o

in
d
ic

es
)

M
o
n
et

D
B

(i
n
d
ic

es
)

R
D

F
S
li
ce

1 27 131 582 1577 83 97 229 75 273 1955 185 210 1042
2 53 132 683 1580 118 278 2030
3 35 131 609 1578 88 101 89 276 1955 186 217
4 95 129 583 1579 118 131 307 273 1962 522 471
5 62 131 498 290 364 168 278 1956 894 793
6 93 137 1011 866 797 354 287 2361 2066 1934
7 122 134 673 898 753 544 279 2005 1809 2016
8 151 132 768 447 274 1967
9 250 136 749 2669 3064 712 283 2018 3275 3090

10 95 132 678 587 491 334 277 1959 1845 1834
11 28 130 498 1576 64 273 1957
12 56 130 682 164 273 1959
13 63 132 669 312 287 174 277 1969 908 955
14 28 136 787 1595 85 99 74 63 284 2069 181 217 334

of which load: 489 1575 72 92 1946 160 194

Table 2. Runtime for the LUBM queries, in seconds.

LUBM500 and LUBM1000. For the larger LUBM datasets, we chose the
fastest systems in each group as competitors: RDFox for the Datalog systems,
Stardog and Virtuoso for the triple stores, MonetDB for the databases, and
RDFSlice as its own group. Table 2 shows the sizes of the datasets and the
runtimes of the systems. Our system performs best on more than half of the
queries. The only system that can achieve a similar performance is RDFox. As
before, RDFox always needs just a constant time to answer a query, because it
loads the dataset into main memory. This makes the system very fast. However,
this technique will not work if the dataset is too large, as we shall see next.

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 13

5.2 Reachability

Setting. Our next datasets are the social networks LiveJournal [19], com-
orkut [19], and friendster [17]. Table 3 shows the sizes of these datasets. We
used a single query, which asks for all nodes that are reachable from a given
node. As competitors, we chose again RDFox, Stardog, and Virtuoso. We could
not use MonetDB or RDFSlice, because the reachability query is recursive. As
an additional competitor, we chose BigDatalog [28]. This system was already
run on the same LiveJournal and com-orkut graphs in the original paper [28].
We chose 3 random nodes (and thus generated 3 queries) for LiveJournal and
com-orkut. We chose one random node for Friendster.

Results. Table 3 shows the average runtime for each system. Virtuoso was the
slowest system, and we aborted it after 25min and 50min, respectively. We did
not run it on the Friendster dataset, because Friendster is 20 times larger than
the other two datasets. Stardog performs better. Still, we had to abort it after
10 hours on the Friendster dataset. BigDatalog performs well, but fails with an
out of space error on the Friendster dataset. The fastest system is RDFox. This
is because it can load the entire data into memory. This approach, however, fails
with the Friendster dataset. It does not fit into memory, and RDFox is unable to
run. Bash Datalog runs 50% slower than RDFox. In return, it is the only system
that can finish in reasonable time on the Friendster dataset (4:32h).

dataset Nodes Edges Bash RDFox BigDatalog Stardog Virtuoso

LiveJournal 4.8 M 69 M 117 70 532 941 >1500
orkut 3.1 M 117 M 225 121 1838 1123 >3000
friendster 68 M 2 586 M 16306 OOM OOS >36000

Table 3. Runtime for the reachability query, in seconds (OOM=Out of memory;
OOS=Out of space).

5.3 YAGO and Wikidata

Setting. Our final experiments concern the knowledge bases YAGO [29] and
Wikidata [33]. The YAGO data comes in 3 different files, one with the 12 M
facts (814 MB), one with the taxonomy with 1.8 M facts (154 MB), and one with
the 24 M type relations (1.6 GB in size). Wikidata is a single file of 267 GB with
2.1 B triples. We designed 4 queries that are typical for such datasets (Table 1),
together with a T-Box (Table 2).

Results. Table 4 shows the results of RDFox and our system on both datasets.
On YAGO, RDFox is much slower than our system, because it needs to instan-
tiate all rules in order to answer queries. On Wikidata, the data does not fit
into main memory, and hence RDFox cannot run at all. Our system, in contrast,
scales to the larger sizes of the data. One may think that a database system such
as Postgres may be better adapted for such large datasets. This is, however, not
the case. Postgres took 104 seconds to load the YAGO dataset, and 190 seconds

14 Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

query1(X) :- subClassOf(X, "person") .

query1(X) :- subClassOf(X, Y), query1(Y) .

query2(X) :- hasParent(X, "Louis XIV") .

query3(X) :- hasAncestor(X, "Louis XIV") .

query4(X) :- hasBirthPlace(X, Y), isLocatedIn(Y, "Andorra") .

Fig. 1. Knowledge Base queries

hasParent(X,Y) :- hasChild(Y,X) .

hasAncestor(X,Y) :- hasParent(X,Y) .

hasAncestor(X,Z) :- hasAncestor(X,Y), hasParent(Y,Z) .

isLocatedIn(X,Y) :- containsLocation(Y,X) .

containsLocation(X,Y) :- isLocatedIn(Y,X) .

isLocatedIn(X,Y) :- isLocatedIn(X,Y), isLocatedIn(Y,Z) .

Fig. 2. Knowledge Base rules

to build the indexes. In this time, our system has already answered nearly all
the queries.

Discussion. All of our experiments evaluate only the setting that we consider
in this paper, namely the setting where the user wants to execute a single query
in order to preprocess the data. Our experiments show that Bash Datalog can
preprocess tabular data without the need to install any particular software.

Our approach has some limitations. For example, we could not implement
a disk-based hash-join efficiently in Bash commands. Another limitation is the
heuristic join reordering. It sometimes introduces large intermediate results, re-
sulting in a less efficient query execution.

Overall, however, our approach is competitive in both speed and scalability to
the state of the art. We attribute this to the highly optimized POSIX commands,
and to our optimizations described in Section 4.6. Furthermore, the startup cost
of our system is quite low, as it consists mainly of translating the query to a
Bash script.

YAGO Wikidata

query Bash RDFox Bash RDFox

1 8 483 2259 OOM
2 5 483 2254 OOM
3 293 483 10171 OOM
4 5 481 2270 OOM

Table 4. Runtime for the Wikidata/YAGO benchmark in seconds. (OOM = out of
memory error)

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 15

6 Conclusion

In this paper, we have presented a method to compile Datalog programs into
Unix Bash programs. This allows executing Datalog queries on tabular datasets
without installing any software. We show that our method is competitive in
terms of speed with state-of-the-art systems. Our system can be used online at
https://www.thomasrebele.org/projects/bashlog, The Web interface also
provides an API which allows to translate Datalog to Bash via an HTTP request.
The source code is available at https://github.com/thomasrebele/bashlog.
For future work, we aim to explore extensions of this work such as adding support
of numerical comparisons to the Datalog language.

Acknowledgments This research was partially supported by Labex DigiCosme
(project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the
program “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02).

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. A. V. Aho and J. D. Ullman. The universality of data retrieval languages. In ACM
Symposium on Principles of Programming Languages, 1979.

3. I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB: efficient
query execution on raw data files. In SIGMOD, 2012.

4. P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in
MonetDB. Communications of the ACM, 51(12), 2008.

5. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas.
Apache flink�. IEEE Data Eng. Bull., 38(4), 2015.

6. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: implementing the semantic web recommendations. In WWW, 2004.

7. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM Transactions on Computer Systems, 26(2), 2008.

8. O. Erling and I. Mikhailov. RDF support in the virtuoso DBMS. In Networked
Knowledge, 2009.

9. M. K. et al. Impala: A modern, open-source SQL engine for hadoop. In CIDR,
2015.

10. O. Etzioni, K. Golden, and D. S. Weld. Sound and efficient closed-world reasoning
for planning. Artificial Intelligence, 89(1-2):113–148, 1997.

11. J. D. Fernández, M. A. Mart́ınez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias.
Binary RDF representation for publication and exchange (HDT). Web Semantics:
Science, Services and Agents on the World Wide Web, 19, 2013.

12. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. J. of Web Semantics, 3(2-3), 2005.

13. V. Haarslev and R. Möller. RACER system description. In IJCAR, 2001.
14. S. Harris, A. Seaborne, and E. Prudhommeaux. SPARQL 1.1 query language.

W3C recommendation, 3 2013.

https://www.thomasrebele.org/projects/bashlog
https://github.com/thomasrebele/bashlog

16 Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

15. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In EuroSys, 2007.

16. P. Katsogridakis, S. Papagiannaki, and P. Pratikakis. Execution of recursive queries
in apache spark. In Euro-Par, 2017.

17. J. Kunegis. Konect: the koblenz network collection. In WWW, 2013.
18. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.

The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7(3), 2006.

19. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

20. E. Marx, S. Shekarpour, T. Soru, A. M. P. Brasoveanu, M. Saleem, C. Baron,
A. Weichselbraun, J. Lehmann, A. N. Ngomo, and S. Auer. Torpedo: Improving
the state-of-the-art RDF dataset slicing. In ICSC, 2017.

21. B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, et al. OWL 2 web
ontology language profiles. W3C recommendation, 12 2012.

22. B. Motik, Y. Nenov, R. Piro, I. Horrocks, and D. Olteanu. Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In AAAI, 2014.

23. B. Parsia and E. Sirin. Pellet: An OWL DL reasoner. In ISWC, 2004.
24. T. Rebele, T. P. Tanon, and F. Suchanek. Technical report: Answering datalog

queries with unix shell commands. Technical report, Telecom ParisTech, 2018.
https://www.thomasrebele.org/publications/2018_report_bashlog.pdf.

25. B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. C. Murthy, and C. Curino.
Apache Tez: A unifying framework for modeling and building data processing ap-
plications. In SIGMOD, 2015.

26. B. Scholz, H. Jordan, P. Subotic, and T. Westmann. On fast large-scale program
analysis in datalog. In International Conference on Compiler Construction, 2016.

27. R. Shearer, B. Motik, and I. Horrocks. HermiT: A highly-efficient owl reasoner. In
OWLED, volume 432, 2008.

28. A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo. Big
data analytics with Datalog queries on Spark. In SIGMOD, 2016.

29. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In WWW, 2007.

30. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. Automated reasoning, 2006.

31. J. D. Ullman. Principles of Database and Knowledge-Base Systems. W. H. Freeman
& Co.

32. R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,
B. De Meester, G. Haesendonck, and P. Colpaert. Triple Pattern Fragments: a
low-cost knowledge graph interface for the Web. J. of Web Semantics, 37–38, Mar.
2016.

33. D. Vrandecic and M. Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10), 2014.

34. J. Wang, M. Balazinska, and D. Halperin. Asynchronous and fault-tolerant recur-
sive datalog evaluation in shared-nothing engines. PVLDB, 8(12), 2015.

35. H. Wu, J. Liu, T. Wang, D. Ye, J. Wei, and H. Zhong. Parallel materialization of
datalog programs with spark for scalable reasoning. In WISE, 2016.

36. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. In USENIX Workshop on Hot Topics in
Cloud Computing, 2010.

37. J. Zhou, P. Larson, and R. Chaiken. Incorporating partitioning and parallel plans
into the SCOPE optimizer. In ICDE, 2010.

http://snap.stanford.edu/data
https://www.thomasrebele.org/publications/2018_report_bashlog.pdf

	Bash Datalog: Answering Datalog Querieswith Unix Shell Commands

